
50 The Delphi Magazine Issue 30

The Ultimate TDataLink?
by Joanna Carter

During the course of writing
GridProQuo (The Ultimate

Grid Component?) I discovered I
needed to use a TDataLink deriva-
tive to communicate between the
data and the component. A TField-
Datalink is all very well and good
for those components that only
need to access one field at a time,
but GridProQuoneeded to access all
the fields, all the time.

I took a long hard look at the
base TDataLink class and then at
the source code for TDB..Grid. This
is where the problems started.
Firstly, I was creating my TFlexi-
Grid component from scratch. My
starting place was not to be TCus-
tomGrid or anything as sophisti-
cated as that, because one of the
major requirements of TFlexiGrid
was that it had to be capable of dis-
playing every row at a different
height, according to how much
data was in memo or graphic fields.
So I determined that I would have
to derive from TCustomControl. This
meant that much of the functional-
ity in the TDB..Grid source was of
little help.

Now the TDB..Grid family of com-
ponents uses a TGridDataLink class
that has been written with those
classes in mind and is fairly inextri-
cably bound in to the source for
those components. What was
required was a generic TDataLink
derivative that would serve the
needs of any component that used
more than one field of a dataset.

There is a common methodology
for including data handling in a
component that suggests includ-
ing a TDataLink as a private field in
the component. This is to be rec-
ommended, but one problem
occurs when you delete either the
DataSet or DataSource components
from the form. The component
then has a hanging pointer that
needs to be set to nil so that you
can test its validity before doing
any operation in the component.
The most common advice given in
this situation is to override the

Notification method in the com-
ponent to trap when the DataSource
or DataSet is removed from the
form and set the internal reference
to that data component to nil.

If you have an internal reference
to both the DataSet and the Data-
Source stored in, say, fDataSource
and fDataSet, within the compo-
nent, then this will work. In fact, the
idea of using a TDataLink then
becomes somewhat redundant.
However, using a TDataLink is defi-
nitely to be preferred. As you will
see, it provides you with a great
deal more functionality that would
be difficult to replicate repeatedly,
every time you write a new compo-
nent. However, if you use the code
in Listing 1 to try and determine
when and whether fDataLink.Data-
Source is invalid then you will come
to a sticky end. When TDataSource

procedure TMyComponent.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (AComponent = fDataLink.DataSource) and
(Operation = opRemove) then
fDataLink.DataSource := nil;

end;

➤ Listing 1

constructor Create(AComponent: TComponent); virtual;
destructor Destroy; override;
property DataSetName: string read GetDataSetName write SetDataSetName;
property OnNewDataSet: TDataSetNotifyEvent
property OnDataSetOpen: TDataSetNotifyEvent
property OnDataSetChange: TDataSetNotifyEvent
property OnIndexChange: TDataSetNotifyEvent
property OnLayoutChange: TDataSetNotifyEvent
property OnPostData: TDataSetNotifyEvent
property OnDataSetClose: TDataSetNotifyEvent
property OnInvalidDataSet: TDataSetNotifyEvent
property OnInvalidDataSource: TDataSetNotifyEvent
property OnDestroyDataLink: TDataSetNotifyEvent

➤ Listing 2

is being destroyed, it makes a Noti-
fyDataLinks call that sets the Data-
Source property of the TDataLink to
Nil, long before Notification ever
gets called. What is needed is to get
into the workings of the TDataLink
itself and use what is in there to
catch whatever happens to the
data side of the link.

So, I came up with a class that I
have called TComponentDataLink
which is derived from TDataLink
and uses and enhances that func-
tionality. Listing 2 shows the
public interface (the full code is on
the disk of course).

First we create a new construc-
tor that takes a TComponent as a
parameter, this is to ensure that we
have an internal pointer to the
component for the life of the
datalink. Then we need a reference
to the dataset that is being

function TComponentDataLink.GetDataSetName: string;
begin
Result := fDataSetName;
if DataSet <> nil then
Result := DataSet.Name;

if DataSet is TTable then
Result := TTable(DataSet).TableName;

if DataSet is TQuery then
if DataSet.DataSource <> nil then
Result := TTable(TQuery(DataSet).DataSource.DataSet).TableName;

end;

➤ Listing 3



February 1998 The Delphi Magazine 51

accessed, so that, when the form is
streamed to and from the DFM file,
we can keep track of the dataset to
which we are connected. This is
provided by the DataSetName prop-
erty. Although the Set method
simply assigns a string to an inter-
nal variable, fDataSetName, the Get
method is a little more sophisti-
cated (Listing3).

Firstly the stored value of the
internal variable that may or may
not be valid is assigned to Result.
Then the actual dataset name is
assigned over the top of it, in case
the dataset has changed. This
allows a check to be made for this
change by comparing the private
fDataSetName and the more sophis-
ticated DataSetName property.
Finally two checks are made to see
whether the dataset is a TTable or
TQuery and in either case, if a Table-
Namehas been assigned. If you think
that sounds a bit odd, take it from
me, it was necessary to make the
whole thing work!

Now we come to the pivotal part
of using a TComponentDataLink. To
find out what is happening to the
data components. TDataLink
declares several empty virtual pro-
cedures that allow you to intercept
events that are generated from the
dataset and datasource, these
must be declared and overridden if
we want to make use of them
(Listing 4). I did not need to use
every one, but here are the three
that I found to be most useful.

The first one we will look at is the
ActiveChanged procedure. The
code is quite complex, so rather
than just comment it, I will say
something about each section as
we go through it. You will see refer-
ence to events being called, that
can be assigned to in the compo-
nent and the appropriate action
taken.

This procedure is called when-
ever the Active status of the TCom-
ponentDataLink changes. The first
case to check for is whether the
link has just become active or
inactive (Listing 5).

Now we know that the link has
just become active, we now need to
check whether the dataset has
changed or just been re-opened.
We also need to grab a pointer to

procedure ActiveChanged; override;
procedure CheckBrowseMode; override;
procedure DataSetChanged; override;
procedure DataSetScrolled(Distance: Integer); override;
procedure FocusControl(Field: TFieldRef); override;
procedure EditingChanged; override;
procedure LayoutChanged; override;
procedure RecordChanged(Field: TField); override;
procedure UpdateData; override;

➤ Listing 4

procedure TComponentDataLink.Activechanged;
begin
if Active then begin
fDataSet := DataSet;
if DataSetName <> fDataSetName then begin
fDataSetName := DataSetName;
fIndexNames := TTable(fDataSet).IndexFieldNames;
if Assigned(fOnNewDataSet) then fOnNewDataSet(DataSet);

end else begin
fIndexNames := TTable(DataSet).IndexFieldNames;
if Assigned(fOnDataSetOpen) then fOnDataSetOpen(DataSet);
end;

end
end;

➤ Listing 5

...
else begin
// Active = False
if DataSet = nil then begin
if Assigned(fOnInvalidDataSource) then
fOnInvalidDataSource(fDataSet);

fDataSet := nil;
fDataSetName := '<INVALID>';
fIndexNames := '';

end
...

➤ Listing 6

the DataSet, for reasons that will
become apparent later. A copy of
the DataSetName and IndexField-
Names is also kept for later use. As
you can see, coping with the TCom-
ponentDataLink becoming active is
quite straightforward. Now for the
fun bit, coping with things being
closed, destroyed, changed and so
on (Listing 6).

Finding out how to handle data
components being deleted from
the form involved drawing up a
truth table, trapping every change
and checking all possible states. If
the link has just gone inactive then,
if we find the DataSet is Nil, this

indicates that the DataSource has
been removed or invalidated in
some way. Once again, it might
seem odd, but that is how it works.

In order to detect when the Data-
Set is being destroyed, all we have
to do is check it’s ComponentState
(Listing 7).

Finally, if the code executes suc-
cessfully as far as Listing 8, then we
know that all that has happened is
that the DatSet has closed. We
need to keep a note of things like
the DataSetName and IndexField-
Names, so that we can detect any
changes the next time the link
becomes active.

...
else begin
if (csDestroying in DataSet.ComponentState) then begin
if Assigned(fOnInvalidDataSet) then
fOnInvalidDataSet(fDataSet);

fDataSet := nil;
fDataSetName := '<INVALID>';
fIndexNames := '';

end
...

➤ Listing 7



52 The Delphi Magazine Issue 30

...
else begin
if Assigned(fOnDataSetClose) then
fOnDataSetClose(DataSet);

if DataSet <> nil then begin
fDataSetName := DataSetName;
fIndexNames := TTable(DataSet).IndexFieldNames;

end;
...

➤ Listing 8

procedure TComponentDataLink.DataSetChanged;
begin
if TTable(DataSet).IndexFieldNames <> fIndexNames then begin
fIndexNames := TTable(DataSet).IndexFieldNames;
if Assigned(fOnIndexChange) then
fOnIndexChange(DataSet);

end else
if Assigned(fOnDataSetChange) then
fOnDataSetChange(DataSet);

end;

➤ Listing 9

Now we need to look at changes
that can occur in the DataSet
without the necessity for opening
and closing the DataSet (Listing 9).

DataSetChanged is called on many
different occasions, but the main
one I was interested in was when
the IndexFieldNames property got
changed. Looking at the above
code you will now realise why we
kept an internal reference to the
index fields when we both opened
and closed the dataset. Of course,
as a courtesy, if we aren’t handling
anything else here, then we call an
assignable event so as not to break
the event chain. We could also
separate out other events in this
procedure.

Moving on to LayoutChanged (see
Listing 10), this is called when you

That handles most of the code
that can be handled in the TCompo-
nentDataLink, but there is one
thing that I found very important,
that can only be handled in the
component that you are writing.

It is important in maintaining the
rest of the TComponentDataLink to
ensure that the name of the
current DataSet is written out to
the DFM file as and when the
component is streamed out. To
accomplish this we need to use
the DefinePropertiesmethod (List-
ing 11). Although it would be possi-
ble to tamper with the DFM file,
using this method will mean that
the DataSetName property will not
appear in the Object Inspector,
where it could more easily be
corrupted.

I would be the first to agree that
some of this logic could be han-
dled by the dataset events that are
provided and maybe TComponent-
DataLink could be further
enhanced, but, on the other hand,
this seems to be the only way to
reliably detect removal of TData-
Source and TTable components.
Unless, of course, you know
otherwise?

Joanna Carter is a freelance con-
sultant, developer and trainer
based in Liverpool. You can email
her at joannac@btinternet.com

On our Web site:
www.itecuk.com
Here’s some of what you can find:

➤ Article index database: online or downloadable
➤ Details of what’s coming up in the next issue
➤ Back issues: contents and availability
➤ Lots and lots of sample articles from back issues
➤ Links to other great Delphi sites
➤ The Delphi Magazine Book Review Database

change the order of fields in the
dataset, maybe by using the Fields
Editor in the IDE. All that is needed
here is to call the assignable event.

➤ Listing 11

procedure TComponentDataLink.LayoutChanged;
begin
if Assigned(fOnLayoutChange) then
fOnLayoutChange(DataSet);

end;

➤ Listing 10

procedure TMyComponent.DefineProperties(Filer: TFiler);
begin
inherited;
Filer.DefineProperty('DataSetName', ReadDataLink, WriteDataLink,
fDataLink.DataSource <> nil);

end ;
procedure TMyComponent.ReadDataLink(Reader: TReader);
begin
fDataLink.DataSetName := Reader.ReadString;

end;
procedure TMyComponent.WriteDataLink(Writer: TWriter);
begin
Writer.WriteString(fDataLink.DataSetName);

end;


	On our Web site:

